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For what follows, we’re going to consider the set of real numbers to be the
universe of discourse.

Convex Sets1

A convex combination is a linear combination of points where all
coefficients are non-negative and sum to one.

Consider points (possibly vectors) x, y, and z. A general convex
combination, which can be denoted w, is

w = k1x + k2y + k3z

where k1 + k2 + k3 = 1 and ki ≥ 0, i = 1, 2, 3.

The convex combination we are going to use most is:

αx + (1− α)y α ∈ [0, 1]

Think of it like a weighted average between two points (or vectors), where α
determines the weight. The convex combinations made by all possible
values of α will be a line between the two points.

A ⊆ Rn is a convex set iff αx + (1− α)y ∈ A ∀ x,y ∈ A,α ∈ [0, 1]

A Convex Set A Non-Convex Set

1Prepared by Sarah Robinson
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If A and B are both convex sets in Rn, then A ∩B is a convex set.

A B

Intersection: A ∩B

Is A ∪B a convex set?

The convex hull of set B ⊆ Rn is the smallest convex set containing B
(the set of all convex combinations of points in B).

A Non-Convex Set The Convex Hull

Example: A two-player prisoners’ dilemma from game theory and the
convex hull of the payoff profiles:

C D

C (3, 3) (1, 4)

D (4, 1) (1, 1)

(1,1)

(1,4)

(3,3)

(4,1)
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Example: Consider set S:

S = {x | x ∈ R ∧ −1 ≤ x ≤ 1}

Show that S is a convex set.

• A ⊆ Rn is a convex set iff αx+(1−α)y ∈ A ∀ x,y ∈ A,α ∈ [0, 1]

To Show:

Proof:
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Closed Sets

A set A ⊆ Rn is closed iff for every sequence {xn}∞n=1 such that xn ∈ A for
all n and xn → x, it is also the case that x ∈ A
• ≈ set A also includes its boundaries

A Closed Set in R2

A set is an open set if and only if its complement is a closed set.

The following sets in Rn are open sets:

• The empty set ∅
• The entire space Rn

• The union of any number of open sets

• The intersection of any finite number of open sets

The following sets in Rn are closed sets:

• The empty set ∅
• The entire space Rn

• The union of any finite number of closed sets

• The intersection of any number of closed sets
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We could also define open sets using the notion of an epsilon-neighborhood
(a ball with radius ε). A set A is open if and only if for all x ∈ A, there
exists some ε > 0 such that the ε-ball centered at x is contained in A.

An Open Set in R2

For any point in an open set, we can always draw a tiny circle around the
point that lies entirely within the set. I bring up this definition because
ε-balls will come up in other contexts.
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Example: Consider set S:

S = {(x, y) | (x, y) ∈ R2 ∧ x2 + y2 ≤ 1}

Show that S is closed.

• A ⊆ Rn is closed iff for every sequence {xn}∞n=1 such that xn ∈ A
for all n and xn → x, it is also the case that x ∈ A
• Theorem 1: If an → a and bn → b, then an + bn → a + b and
anbn → ab

• Theorem 2: If an → a, then an ≤ b for all n implies a ≤ b.

To Show:

Proof:
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Bounded Sets

A set A ⊆ Rn is bounded if and only if there exists an M and a point
c ∈ Rn such that the M -ball centered at c contains all of A.

A Bounded (Closed) Set A Non-Bounded (Open) Set

To prove a set in A ⊆ Rn is bounded:

• Pick a radius M

• Pick a center point c

• Let x ∈ A – arbitrary x

• Show that x is less than M distance away from c

To prove a set in A ⊆ Rn is bounded in the special case where the points
furthest away from 0 are along the axes:

• Pick a radius M (use 0 as the center point)

• Let x ∈ A – arbitrary x

• Show that −M ≤ xi ≤M ∀i = 1, . . . , n

A set A ⊆ Rn is compact if and only if it is closed and bounded.
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Example: Consider set S:

S = {(x, y) | (x, y) ∈ R2 ∧ x2 + y2 ≤ 1}

Show that S is bounded.

To prove a set in A ⊆ Rn is bounded in the special case where the points
furthest away from 0 are along the axes:

• Pick a radius M (use 0 as the center point)

• Let x ∈ A – arbitrary x

• Show that −M ≤ xi ≤M ∀i = 1, . . . , n

To Show: S is bounded

Proof:

Let M = 2 (by hypothesis)

=⇒ x2 + y2 ≤ 1 (def. of S)

=⇒ (x2 ≤ 1) ∧ (y2 ≤ 1) (x2 ≥ 0 ∀x)

=⇒ (−1 ≤ x ≤ 1) ∧ (−1 ≤ y ≤ 1) (algebra)

=⇒ (−2 ≤ x ≤ 2) ∧ (−2 ≤ y ≤ 2) (algebra)

=⇒ (−M ≤ x ≤M) ∧ (−M ≤ y ≤M) (algebra)

=⇒ S is bounded (by def. of bounded)
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Continuity & Differentiability of Functions

Let f be a function with domain D and points (or vectors) x,y ∈ D.

f is continuous at x iff for every ε > 0 there exists δ > 0 such that
||x− y|| < δ =⇒ ||f(x)− f(y)|| < ε.

Recall that for x,y ∈ Rn,

||x− y|| =

√√√√ n∑
i=1

(xi − yi)2

f is continuous at x iff for every sequence xn ∈ D such that xn → x, the
sequence f(xn)→ f(x).

f is a continuous function if it is continuous at every point in its domain.
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Let f : D → R be a continuous, real-valued function where D is non-empty,
compact subset of Rn. Then there exists a vector x ∈ D and a vector x ∈ D
such that

∀x ∈ D, f(x) ≤ f(x) ≤ f(x)

That is, a continuous function f(x) attains a maximum and a minimum on
every compact set. (Weierstrass Extreme Value Theorem).

Let D ⊆ Rn be a non-empty compact, convex set. Let f : D → D be a
continuous function. Then there exists at least one fixed point of f in D,
that is, there exists x∗ ∈ D such that f(x∗) = x∗. (Brouwer Fixed Point
Theorem).

f(x)

x

f(x) = x

For D = [0, 1] then any continuous f : D → D must cross the 45-degree line.
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Let f be a function defined on an interval (a, b) ⊆ R and let x ∈ (a, b).
Then f is differentiable at x if and only if the limit of

lim
h→0

f(x+ h)− f(x)

h

exists and is finite.

If this is the case, then the limit is called the derivative of f at x and is

denoted f ′(x) or df(x)
dx .

For a multivariate functions f(x) where x ∈ Rn, the partial derivative of
f with respect to xi is given by:

fi(x) =
∂f

∂xi
= lim

h→0

f(x1, . . . , xi + h, . . . xn)− f(x1, . . . , xi, . . . xn)

h

f ′(x) is a function of x. Often, we want to discuss the value of the
derivative at a particular point c:

f ′(c)
df

dx

∣∣∣∣
c
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Level Sets

We are focusing on real-valued functions:

• f : R→ R (univariate)

• f : Rn → R (multivariate)

Let f be a real-valued function such that f : D → R where D ⊆ Rn. Then
L(x0) is a level set relative to x0 if and only if

L(x0) =
{
x | x ∈ D ∧ f(x) = f(x0)

}

Indifference curves are level sets. Consider the utility function:

u(x1, x2) = x
1/2
1 x

1/2
2

x1

x2

x
y

x = (1, 4) and u(x) = 2

y =
(
32, 12

)
and u(y) = 4

All the points on the curve running through x give a utility of 2, while all
those on the curve running through y provide a utility of 4.
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We can also define superior and inferior sets:

• S(x0) =
{
x | x ∈ D∧ f(x) ≥ f(x0)

}
is the superior set relative to x0

• I(x0) =
{
x | x ∈ D ∧ f(x) ≤ f(x0)

}
is the inferior set relative to x0

If the weak inequalities are replaced with strict inequalities, then the sets
are the strictly superior set and strictly inferior set, respectively.

Example: Consider the function u(x1, x2) = x1 + x2. The inferior and
superior sets, relative to x = (2, 2) can be illustrated graphically as:

S(x)

I(x)

x1

x2

(2, 2)

6= On and Above/Below

Let f : D → R, where D ⊆ Rn and R ⊆ R. The the set of points on and
below the graph of f is defined as:

A = {(x, y) | x ∈ D ∧ f(x) ≥ y}

Similarly, the set of points on and above the graph is defined as:

B = {(x, y) | x ∈ D ∧ f(x) ≤ y}
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Note that superior/inferior sets are points in the domain, while points
relative to graph are ordered pairs, (n+ 1)-tuples with elements from both
the domain and the range.

Consider the set of points on and above the graph of the function u(x) = x2.

x

u(x)
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Concavity and Convexity

Let f : D → R where D is a convex subset of Rn. A function is concave if
and only if for all x0,x1 ∈ D and t ∈ [0, 1]:

f
(
tx0 + (1− t)x1

)
≥ tf(x0) + (1− t)f(x1)

A function is convex if and only if for all x0,x1 ∈ D and t ∈ [0, 1]:

f
(
tx0 + (1− t)x1

)
≤ tf(x0) + (1− t)f(x1)

f(x)

xConcave

f(x)

xConvex
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Example: Consider f : R→ R where f(x) = |x|. Prove that it is convex.

• A function is convex iff for all x0,x1 ∈ D and t ∈ [0, 1],

f
(
tx0 + (1− t)x1

)
≤ tf(x0) + (1− t)f(x1)

• The absolute value function |x| =

{
x if x ≥ 0

−x if x < 0

• Theorem 1: |ab| = |a||b|
• Theorem 2: The triangle inequality, |a+ b| ≤ |a|+ |b|

To show: f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Proof:
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Let f : D → R, where D ⊆ Rn and R ⊆ R. Then:

f is a concave function ⇐⇒ the set on and below f is a convex set

f is a convex function ⇐⇒ the set on and above f is a convex set

Let f : D → R where D is a convex subset of Rn. A function is strictly
concave if and only if for all x0,x1 ∈ D 3 x0 6= x1 and t ∈ (0, 1):

f
(
tx0 + (1− t)x1

)
> tf(x0) + (1− t)f(x1)

A function is strictly convex if and only if for all x0,x1 ∈ D 3 x0 6= x1

and t ∈ (0, 1):

f
(
tx0 + (1− t)x1

)
< tf(x0) + (1− t)f(x1)

(We’ve changed the inequality, made sure the two points are distinct, and
made t strictly between 0 and 1).

x

f(x)

x0

x1

x

f(x)

x0

x1

x

f(x)

x0

x1

Strictly convex Convex but not strictly Strictly concave
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Let D be a convex, non-degenerate interval on R, such that on the interior
of D, f is twice continuously differentiable. Then the following statements
are equivalent:

1. f is concave

2. f ′′(x) ≤ 0 for all non-endpoints x ∈ D.

3. For all x0 ∈ D, f(x) ≤ f(x0) + f ′(x0)(x− x0)
4. f ′′(x) < 0 for all non-endpoints x ∈ D =⇒ f is strictly concave

The following statements are also equivalent:

1. f is convex

2. f ′′(x) ≥ 0 for all non-endpoints x ∈ D.

3. For all x0 ∈ D, f(x) ≥ f(x0) + f ′(x0)(x− x0)
4. f ′′(x) > 0 for all non-endpoints x ∈ D =⇒ f is strictly convex
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For some functions f and g, the composite function is defined as

(g ◦ f)(x) = g
(
f(x)

)

Let f be a concave function such that f : D → R, where D ⊆ Rn and
R ⊆ R. Let g be an increasing, concave function, g : R→ R. Then
(g ◦ f)(x) is a concave function.

Example: f(x) =
1

x2

g(x) =
√
x

(g ◦ f)(x) =

√
1

x2
=

1

x

Let f be a convex function such that f : D → R, where D ⊆ Rn and
R ⊆ R. Let g be an increasing, convex function, g : R→ R. Then the
composite function defined as (g ◦ f)(x) = g(f(x)) is a convex function.

We also call g(·) a transformation of f(·).
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Example:
Let f be a concave function such that f : D → R, where D ⊆ Rn and
R ⊆ R. Let g be an increasing, concave function, g : R→ R.

Prove that (g ◦ f)(x) is a concave function.

• (g ◦ f)(x) = g
(
f(x)

)
• f is concave iff for all x0,x1 ∈ D and t ∈ [0, 1],

f
(
tx0 + (1− t)x1

)
≥ tf(x0) + (1− t)f(x1)

• f is increasing iff ∀x, y, x ≥ y =⇒ f(x) ≥ f(y)

To show:

Proof:
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Quasiconcavity & Quasiconvexity

More useful in economics are related concepts, quasiconcavity and
quasiconvexity, for a few reasons.

Quasiconcavity and quasiconvexity are weaker conditions:

• f is concave =⇒ f is quasiconcave

• f is convex =⇒ f is quasiconvex

Concavity is a cardinal property

• Whether a function is concave “depends on the numbers assigned”

• It is not preserved by a strictly increasing transformation

• f(x) =
√
x (concave on R+)

• g(x) = x4 (strictly increasing on R+)

• g(f(x)) = x2 (convex on R+)

Quasiconcavity is an ordinal property

• Whether a function is quasiconcave depends on the shape of the
function (on the ordering)

• It is preserved by a strictly increasing transformation

• g(f(x)) = x2 is both quasiconcave and quasiconvex

• Increasingness & decreasingness are other ordinal properties

(Convexity is also cardinal, quasiconvexity is also ordinal.)

We call a transformation with a strictly increasing function a monotonic
transformation. Such a transformation preserves ordering, so

f(x) < f(y) < f(z) ⇐⇒ g(f(x)) < g(f(y)) < g(f(z))

We like ordinal properties because our concept of u(·) is based on ordering,
not on actual numbers.
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Let D be a convex subset of Rn. Then the function f : D → R is
quasiconcave if and only if for all x0,x1 ∈ D and t ∈ [0, 1],

f(tx0 + (1− t)x1) ≥ min
{
f(x0), f(x1)

}
x2

x1

x0

x1

{x | f(x) = f1}
{x | f(x) = f2}

f(x)

xx0 x1
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Let D be a convex subset of Rn. Then the function f : D → R is
quasiconvex if and only if for all x0,x1 ∈ D and t ∈ [0, 1],

f(tx0 + (1− t)x1) ≤ max{f(x0), f(x1)}

Let D be a convex subset of Rn. Then the function f : D → R is strictly
quasiconcave if and only if for all x0,x1 ∈ D 3 x0 6= x1 and t ∈ (0, 1),

f(tx0 + (1− t)x1) > min
{
f(x0), f(x1)

}
The function f : D → R is strictly quasiconvex if and only if

f(tx0 + (1− t)x1) < max
{
f(x0), f(x0)

}

Let f : D → R be a concave function, where D ⊆ Rn is convex and R ⊆ R,
and let g : R→ R be an increasing function. Then

1. f is a quasiconcave function

2. g ◦ f is a quasiconcave function

23
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A function f : D → R is quasiconcave iff its superior set S(x) is a convex
set for all x ∈ D.

x2

x1

x

S(x)

f(x)

xx1I(x1) S(x1)

A function f : D → R is quasiconvex iff its inferior set I(x) is a convex set
for all x ∈ D.
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For multi-variate functions . . .

You can prove that they are (strictly) (quasi) concave/convex using the
definitions we discussed above.

You could also use calculus, but need the equivalent of the first and second
derivatives.

The equivalent of the first derivative is the gradient, a vector of 1st order
partial derivatives:

∇f(x) =

[
∂f(x)

∂x1

∂f(x)

∂x2
· · ·

∂f(x)

∂xn

]

The equivalent of the second derivative is the Hessian, the matrix of 2nd

order partial derivatives:

H =


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

. . .

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2∂x2

. . .

... . . .



You can use the Hessian to determine whether f is (strictly) (quasi)
concave/convex. Use Wikipedia if you ever need to do this.
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Example: Show that the function f(x, y) = min{x, y}, defined on R2, is
quasiconcave but not quasiconvex.

• f is quasiconcave iff for all x0,x1 ∈ D and t ∈ [0, 1],
f(tx0 + (1− t)x1) ≥ min

{
f(x0), f(x1)

}
• f is quasiconvex iff for all x0,x1 ∈ D and t ∈ [0, 1],
f(tx0 + (1− t)x1) ≤ max{f(x0), f(x1)}
• Theorem 1: tx+ (1− t)y ≥ min{x, y} ∀t ∈ [0, 1]

• Theorem 2: min
{

min{w, x},min{y, z}
}

= min{w, x, y, z}

(Quasiconcave)

To show:

Proof:
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Example continued: Show that the function f(x, y) = min{x, y}, defined on
R2, is quasiconcave but not quasiconvex.

• f is quasiconcave iff for all x0,x1 ∈ D and t ∈ [0, 1],
f(tx0 + (1− t)x1) ≥ min

{
f(x0), f(x1)

}
• f is quasiconvex iff for all x0,x1 ∈ D and t ∈ [0, 1],
f(tx0 + (1− t)x1) ≤ max{f(x0), f(x1)}
• Theorem 1: tx+ (1− t)y ≥ min{x, y} ∀t ∈ [0, 1]

• Theorem 2: min
{

min{w, x},min{y, z}
}

= min{w, x, y, z}

(Not quasiconvex)
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Marginal Rate of Substitution

Consider two points on the same indifference curve for a utility function
u(x1, x2). Since they provide the same utility, it must be the case that the
change in utility due to the change in x1 exactly compensates for the change
in utility due to the change in x2.

∆ugood 1 + ∆ugood 2 = 0

∂u(x)

∂x1
dx1 +

∂u(x)

∂x2
dx2 = 0

Slope of indifference curve =
dx2

dx1
=
− ∂u(x)/∂x1

∂u(x)/∂x2
= −MRS1,2

MRS1,2 =
∂u(x)/∂x1

∂u(x)/∂x2
≈
−∆x2

∆x1

The MRS is the negative slope of the indifference curve at x. Note that the
MRS is a function of x. It captures how much additional x2 is needed to
compensate for giving up one marginal unit of x1.

We typically think of monotone preferences, where “more is better.” In that
case, indifference curves are downward sloping (the slope is always
negative). The way we’ve defined things here, then the MRS is always
positive. (Sometimes people instead define the MRS as the absolute value
of the slope. Doesn’t matter.)

For u(x1, x2, x3), then we could use MRS1,2, MRS1,3, MRS2,3, etc.
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Homogeneity & Homotheticity

A real-valued function f(x) is homogeneous of degree k if and only if

f(tx) = tkf(x)

A function that is HOD 1 is sometimes called “linearly homogeneous,” and
in the context of production represents a constant-returns-to-scale function.

Consider a Cobb-Douglas production function:

F (K,L) = AKαL1−α

where K ≥ 0 and L ≥ 0. We can show that it is HOD 1:

F (tK, tL) = A(tK)α(tL)1−α

= AtαKαt1−αL1−α

= tAKαL1−α

= tF (K,L)
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A function is homothetic iff it is a monotonic (strictly increasing)
transformation of a HOD k function.

A homothetic function looks like this – along rays from the origin, the
function’s level sets have the same slope. That is to say, along rays from the
origin, the MRSi,j is unchanged for all i, j.

x2

x1

Homogeneity is a cardinal property; homotheticity is an ordinal property.

• u(x1, x2) = x0.51 x0.52 (HOD 1 & homothetic)

• g(x) = x2 (strictly increasing transformation)

• g(u(x1, x2)) = x1 x2 (homothetic)

For utility functions, we don’t care about whether the exponents in a
Cobb-Douglas utility function add up to one, because “twice as much
utility” is meaningless.

For production functions, we do care whether the exponents add up to one
– “twice as many widgets” is different from “1.5x as many widgets.”

30



UCSB Math Camp - Analysis (Class) Summer 2020

Continuity for Correspondences

Let X ⊆ Rn and Y ⊆ Rm. Recall that a correspondence φ : X ⇒ Y maps
elements x ∈ X to sets φ(x) ⊆ Y .

Correspondence φ is:

• non-empty-valued iff φ(x) is non-empty for all x ∈ X
(we are only going to deal with non-empty-valued correspondences)

• convex-valued iff φ(x) is a convex set for all x ∈ X

• compact-valued iff φ(x) is a compact set for all x ∈ X

A correspondence φ : X ⇒ Y is continuous at x iff it is lower
hemi-continuous and upper hemi-continuous at x. It is continuous iff it is
both lower and upper hemi-continuous at every x ∈ X.

A correspondence is lower hemi-continuous at x ∈ X if for every
sequence xn → x such that xn ∈ X ∀n, and for every y ∈ φ(x), there exists
N ≥ 1 and a sequence yn → y such that yn ∈ φ(xn) ∀n ≥ N

• Any element in φ(x) can be approached from all directions of x

• If we have x and y ∈ φ(x), we can find some close by x′ such that
y′ ∈ φ(x′) is close to y

A correspondence is upper hemi-continuous at x ∈ X if for every
sequence xn → x such that xn ∈ X ∀n and for every sequence yn such that
yn ∈ φ(xn) ∀n and yn → y, y ∈ φ(x)

• The limits of sequences are within the set

• φ(x) will not suddenly contain new points in any direction of x

• If we have x, we can find a close by x′ such that every y′ ∈ φ(x′) is
close to some y ∈ φ(x)
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LHC: Any element in φ(x) can be approached from all directions of x

UHC: The limits of sequences are within the set (or φ(x) will not suddenly
contain new points in any direction of x)

LHC but not UHC

UHC but not LHC
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